Наработки за 5 лет

This commit is contained in:
2019-08-27 14:47:10 +05:00
commit f5582d88c3
56 changed files with 11117 additions and 0 deletions

824
HXpower/HXpower.ino Executable file
View File

@@ -0,0 +1,824 @@
/////////////////////////////////////////
// HXbot HXpower firmware /
// EoF 2016 EoF@itphx.ru /
/////////////////////////////////////////
#include <Wire.h>
// DEBUG
#define DEBUG 0
// DEFINE
#define SLAVE_ADDRESS 0x05
#define XOR_SEQ 0xFF
#define EXT_COM 0xAA
#define VIN_PIN 0
#define VDC_PIN 1
#define VBT_PIN 2
#define VBA_PIN 3
#define R_BL 7
#define R_PF 6
#define R_HX 5
#define R_IS 4
#define BL_RED_PIN 8
#define BL_GRN_PIN 9
#define BTN_PIN 2
#define LED_PIN 3
#define REP_COUNT 5
#define TIMEOUT 5000
// COMMANDS
// VOLTMETERS
#define COM_GET_VIN 0x01
#define COM_GET_VDC 0x02
#define COM_GET_VBT 0x03
#define COM_GET_VBA 0x04
#define COM_GET_VCC 0x07
// TEMP
#define COM_GET_TEMP 0x06
// STATUS
#define COM_GET_STAT1 0x08
#define COM_GET_STAT2 0x09
// RELAYS
#define COM_POWER_ON_BL 0x11 // 17
#define COM_POWER_ON_PF 0x12 // 18
#define COM_SWITCH_TO_IS 0x13 // 19
#define COM_SWITCH_TO_IN 0x14 // 20
#define COM_SHUTDOWN_BL 0x15 // 21
#define COM_SHUTDOWN_PF 0x16 // 22
#define COM_SWITCH_TO_LR 0x17 // 23
#define COM_SWITCH_TO_BA 0x18 // 24
#define COM_ENABLE_PF 0x1B // 27
#define COM_DISABLE_PF 0x1C // 28
#define COM_ENABLE_BL 0x1D // 29
#define COM_DISABLE_BL 0x1E // 30
#define OK_RSP 0x00
#define NO_RSP 0xFF
#define ERR_RSP 0x01
#define BLK_RSP 0x02
#define CSE_RSP 0x03
#define IOE_RSP 0x04
#define TMO_RSP 0x05
// CONST
#define DELAY_TIME 900
#define BA_TIMEOUT 3000
#define BA_BLOCK_TIMEOUT 30000
#define BUTTON_CYCLES 4
#define V_CHECK_CYCLES 3
#define VIN_MIN 10.0
#define VIN_MAX 14.0
#define VDC_MIN 4.8
#define VDC_MAX 6.0
#define VBT_MIN 3.0
#define VBT_MAX 4.25
#define VBA_MIN 6.0
#define VBA_MAX 8.4
#define VCC_MIN 4.5
#define VCC_MAX 5.3
// VAR
// резисторы делителя напряжения
const float r1_1 = 200000; // 200K
const float r1_2 = 100000; // 100K
const float r2_1 = 100000; // 100K
const float r2_2 = 100000; // 100K
const float r3_1 = 100000; // 100K
const float r3_2 = 100000; // 100K
const float r4_1 = 200000; // 200K
const float r4_2 = 100000; // 100K
// эту константу (typVbg) необходимо откалибровать индивидуально
const float typVbg = 1.083; // 1.0 -- 1.2
float vcc = 0.0;
float Vmax1, Vmax2, Vmax3, Vmax4;
float kin, kdc, kbt, kba;
float vin, vdc, vbt, vba;
float tin, tdc, tbt, tba;
//char *stime;
byte cmd = 0x00;
byte ext = 0x00;
byte sum = 0x00;
unsigned long lastCommandTime = 0;
byte autoResponse = 0x00;
byte byteResponse = 0x00;
boolean needByte = false;
boolean needSumm = false;
float floatResponse = 0.0;
boolean needFloat = false;
byte floatByte = 0;
byte ba_count = 0;
unsigned long ba_time;
boolean ba_blocked = false;
byte button_count = 0;
boolean vin_ok = false;
byte vin_count = 0;
boolean vdc_ok = false;
byte vdc_count = 0;
boolean vbt_ok = false;
byte vbt_count = 0;
boolean vba_ok = false;
byte vba_count = 0;
boolean vcc_ok = false;
byte vcc_count = 0;
boolean ba_enabled = true;
boolean lr_enabled = true;
boolean pf_enabled = false;
boolean bl_enabled = false;
boolean bl_powered = false;
boolean bl_error = false;
boolean ba_full = false;
boolean ba_charge = false;
byte status_1 = 0x00;
byte status_2 = 0x00;
// Loop delay
int delay_time = DELAY_TIME;
/****************************************************************************
* Главная программа
****************************************************************************/
void setup() {
if (DEBUG) {
Serial.begin(9600);
Serial.println("---");
delay(1000);
}
// определение опорного напряжения
analogReference(DEFAULT); // DEFAULT INTERNAL использовать vcc как AREF
delay(100);
kin = r1_2 / (r1_1 + r1_2);
kdc = r2_2 / (r2_1 + r2_2);
kbt = r3_2 / (r3_1 + r3_2);
kba = r4_2 / (r4_1 + r4_2);
vcc = readvcc();
Vmax1 = vcc / kin;
Vmax2 = vcc / kdc;
Vmax3 = vcc / kbt;
Vmax4 = vcc / kba;
if (DEBUG) {
Serial.print("Vcc= ");
Serial.println(vcc);
Serial.print("Vmax1= ");
Serial.println(Vmax1);
Serial.print("Vmax2= ");
Serial.println(Vmax2);
Serial.print("Vmax3= ");
Serial.println(Vmax3);
Serial.print("Vmax4= ");
Serial.println(Vmax4);
Serial.println("---");
}
// Initialize i2c as slave
Wire.begin(SLAVE_ADDRESS);
// Define callbacks for i2c communication
Wire.onReceive(receiveData);
Wire.onRequest(answer);
pinMode(R_BL, OUTPUT);
pinMode(R_PF, OUTPUT);
pinMode(R_HX, OUTPUT);
pinMode(R_IS, OUTPUT);
pinMode(BTN_PIN, INPUT);
pinMode(LED_PIN, OUTPUT);
pinMode(BL_RED_PIN, INPUT);
pinMode(BL_GRN_PIN, INPUT);
ba_time = millis();
}
void loop() {
// Timeout protection
if ((lastCommandTime + TIMEOUT < millis())) {
floatResponse = 0.0;
floatByte = 0;
needFloat = false;
autoResponse = TMO_RSP;
}
//vcc = readvcc();
// stime = TimeToString(millis()/1000);
// считываем точное напряжение с A0, где будет находиться наш вольтметр с делителем напряжения
tin = 0.0;
tdc = 0.0;
tbt = 0.0;
tba = 0.0;
for (byte i = 0; i < REP_COUNT; i++) {
tin = tin * readvcc() + analogRead(VIN_PIN);
tdc = tdc * readvcc() + analogRead(VDC_PIN);
tbt = tbt * readvcc() + analogRead(VBT_PIN);
tba = tba * readvcc() + analogRead(VBA_PIN);
delay(10);
}
// tin = (tin * vcc) / 1024.0 / kin / REP_COUNT;
// tdc = (tdc * vcc) / 1024.0 / kdc / REP_COUNT;
// tbt = (tbt * vcc) / 1024.0 / kbt / REP_COUNT;
// tba = (tba * vcc) / 1024.0 / kba / REP_COUNT;
tin = tin / 1024.0 / kin / REP_COUNT;
tdc = tdc / 1024.0 / kdc / REP_COUNT;
tbt = tbt / 1024.0 / kbt / REP_COUNT;
tba = tba / 1024.0 / kba / REP_COUNT;
vin = tin;
vdc = tdc;
vbt = tbt;
if (ba_enabled) vba = tba;
// if (DEBUG && count >= 5) {
// Serial.print("Vcc= ");
// Serial.println(vcc);
// Serial.print("Vin= ");
// Serial.println(vin);
// Serial.print("Vdc= ");
// Serial.println(vdc);
// Serial.print("Vbt= ");
// Serial.println(vbt);
// Serial.print("Vpf= ");
// Serial.println(vpf);
// Serial.println("---");
// count = 0;
// }
// else count++;
// Vin check
if (vin >= VIN_MIN && vin <= VIN_MAX) {
if (! vin_ok) vin_count++;
}
else {
vin_count = 0;
vin_ok = false;
}
if (vin_count >= V_CHECK_CYCLES) vin_ok = true;
// Vdc check
if (vdc >= VDC_MIN && vdc <= VDC_MAX) {
if (! vdc_ok) vdc_count++;
}
else {
vdc_count = 0;
vdc_ok = false;
}
if (vdc_count >= V_CHECK_CYCLES) vdc_ok = true;
// Vbt check
if (vbt >= VBT_MIN && vbt <= VBT_MAX) {
if (! vbt_ok) vbt_count++;
}
else {
vbt_count = 0;
vbt_ok = false;
}
if (vbt_count >= V_CHECK_CYCLES) vbt_ok = true;
// Vba check
if (ba_enabled) {
if (vba >= VBA_MIN && vba <= VBA_MAX) {
if (! vba_ok) vba_count++;
}
else {
vba_count = 0;
vba_ok = false;
}
if (vba_count >= V_CHECK_CYCLES) vba_ok = true;
}
else {
//vba = 0.0;
vba_ok = false;
}
// Vcc check
if (vcc >= VCC_MIN && vcc <= VCC_MAX) {
if (! vcc_ok) vcc_count++;
}
else {
vcc_count = 0;
vcc_ok = false;
}
if (vcc_count >= V_CHECK_CYCLES) vcc_ok = true;
// Auto switch to BA
if (! vin_ok) {
switchToBA();
}
// BL status
bl_powered = false;
bl_error = false;
ba_full = false;
ba_charge = false;
if (vin_ok && bl_enabled) {
delay_time = 0;
// if (DEBUG) {
// unsigned long tmp1, tmp2;
//
// tmp1 = millis();
// while(digitalRead(BL_GRN_PIN) == LOW) {
//
// }
// tmp2 = millis();
//
// Serial.print("time1: ");
// Serial.println(tmp2 - tmp1);
//
// tmp1 = millis();
// while(digitalRead(BL_GRN_PIN) == HIGH) {
//
// }
// tmp2 = millis();
// Serial.print("time2: ");
// Serial.println(tmp2 - tmp1);
//
// }
switch (detectBlink(BL_GRN_PIN)) {
case 0:
ba_full = false;
ba_charge = false;
break;
case 1:
ba_full = true;
ba_charge = false;
bl_powered = true;
break;
case 2:
ba_full = false;
ba_charge = true;
bl_powered = true;
break;
}
if (! ba_charge && ! ba_full) {
switch (detectBlink(BL_RED_PIN)) {
case 0:
bl_powered = false;
bl_error = false;
break;
case 1:
bl_powered = true;
bl_error = false;
break;
case 2:
bl_powered = false;
bl_error = true;
break;
}
}
} else delay_time = DELAY_TIME;
// Button reaction
if (digitalRead(BTN_PIN) == HIGH) {
if (button_count >= BUTTON_CYCLES) {
if (ba_enabled && vin_ok) {
switchToIN();
}
else {
switchToBA();
ba_blocked = true;
}
button_count = 0;
}
else button_count++;
}
else button_count = 0;
// Disable BA block
if (ba_blocked && ba_time + BA_BLOCK_TIMEOUT < millis()) {
ba_blocked = false;
}
// Auto switch to IN
if (vin_ok && ba_enabled && ! ba_blocked && ba_time + BA_TIMEOUT < millis()) {
switchToIN();
}
// Auto enable BL
if (! pf_enabled && ! ba_enabled && vin_ok) {
enableBL();
}
status_1 = 0x00;
if (vcc_ok) status_1 |= 0x01;
if (vin_ok) status_1 |= 0x02;
if (vdc_ok) status_1 |= 0x04;
if (vbt_ok) status_1 |= 0x08;
if (vba_ok) status_1 |= 0x10;
if (lr_enabled) status_1 |= 0x20;
if (ba_enabled) status_1 |= 0x40;
if (ba_blocked) status_1 |= 0x80;
status_2 = 0x00;
if (bl_powered) status_2 |= 0x01;
if (bl_error) status_2 |= 0x02;
if (ba_full) status_2 |= 0x04;
if (ba_charge) status_2 |= 0x08;
// if (vpf_low) status_2 |= 0x10;
// if (vpf_high) status_2 |= 0x20;
if (pf_enabled) status_2 |= 0x40;
if (bl_enabled) status_2 |= 0x80;
// Delay
delay(delay_time);
}
/****************************************************************************
* Функции
****************************************************************************/
float readvcc() {
byte i;
float result = 0.0;
float tmp = 0.0;
for (i = 0; i < REP_COUNT; i++) {
// Read 1.1V reference against Avcc
// set the reference to vcc and the measurement to the internal 1.1V reference
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#else
// works on an Arduino 168 or 328
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#endif
delay(3); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Start conversion
while (bit_is_set(ADCSRA,ADSC)); // measuring
uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
uint8_t high = ADCH; // unlocks both
tmp = (high<<8) | low;
tmp = (typVbg * 1023.0) / tmp;
result = result + tmp;
delay(5);
}
result = result / REP_COUNT;
return result;
}
// Callback for received data
void receiveData(int byteCount) {
while(Wire.available()) {
// Get command
ext = Wire.read();
if (ext == EXT_COM && byteCount == 3) {
cmd = 0x00;
sum = 0x00;
if (Wire.available()) sum = Wire.read();
if (Wire.available()) cmd = Wire.read();
if ((cmd ^ XOR_SEQ) != sum) {
autoResponse = CSE_RSP;
return;
}
}
else {
autoResponse = ERR_RSP;
while(Wire.available()) {
ext = Wire.read();
}
return;
}
// Process command
switch (cmd) {
case COM_GET_VIN:
sendFloat(vin);
break;
case COM_GET_VDC:
sendFloat(vdc);
break;
case COM_GET_VBT:
sendFloat(vbt);
break;
case COM_GET_VBA:
sendFloat(vba);
break;
case COM_GET_VCC:
sendFloat(vcc);
break;
case COM_GET_TEMP:
sendFloat(getInternalTemp());
break;
case COM_GET_STAT1:
sendByte(status_1);
break;
case COM_GET_STAT2:
sendByte(status_2);
break;
case COM_POWER_ON_BL:
digitalWrite(R_BL, HIGH);
bl_enabled = true;
commandResponse();
break;
case COM_SHUTDOWN_BL:
digitalWrite(R_BL, LOW);
bl_enabled = false;
commandResponse();
break;
case COM_POWER_ON_PF:
digitalWrite(R_PF, HIGH);
pf_enabled = true;
commandResponse();
break;
case COM_SHUTDOWN_PF:
digitalWrite(R_PF, LOW);
pf_enabled = false;
commandResponse();
break;
case COM_SWITCH_TO_IS:
commandResponse(switchToIS());
break;
case COM_SWITCH_TO_LR:
commandResponse(switchToLR());
break;
case COM_SWITCH_TO_IN:
commandResponse(switchToIN());
break;
case COM_SWITCH_TO_BA:
commandResponse(switchToBA());
break;
case COM_ENABLE_PF:
enablePF();
commandResponse();
break;
case COM_DISABLE_PF:
disablePF();
commandResponse();
break;
case COM_ENABLE_BL:
enableBL();
commandResponse();
break;
case COM_DISABLE_BL:
disableBL();
commandResponse();
break;
default:
autoResponse = ERR_RSP;
break;
}
}
}
void commandResponse() {
lastCommandTime = millis();
autoResponse = OK_RSP;
}
void commandResponse(byte response) {
lastCommandTime = millis();
autoResponse = response;
}
void sendByte(byte value) {
lastCommandTime = millis();
byteResponse = value;
needSumm = false;
needByte = true;
}
void sendFloat(float value) {
lastCommandTime = millis();
floatResponse = value;
floatByte = 0;
needFloat = true;
}
byte cSum(byte value) {
return value ^ XOR_SEQ;
}
byte cSum(byte *data, byte dataSize) {
byte tmp = 0x00;
for (byte i = 0; i < dataSize; i++) {
tmp = tmp ^ data[i];
}
return tmp ^ XOR_SEQ;
}
void answer() {
// Want float value?
if (needFloat) {
// Get access to the float as a byte-array:
byte *data = (byte *) &floatResponse;
if (floatByte < sizeof(floatResponse)) {
// Send byte
Wire.write(data[floatByte]);
floatByte++;
}
else {
// Send control sum
Wire.write(cSum(data, sizeof(floatResponse)));
needFloat = false;
}
}
else {
// Want byte value?
if (needByte) {
if (!needSumm) {
// Send byte
Wire.write(byteResponse);
needSumm = true;
}
else {
// Send control sum
Wire.write(cSum(byteResponse));
needSumm = false;
needByte = false;
}
}
else {
// Want something else?
Wire.write(autoResponse);
}
}
// Nothing more to send
autoResponse = NO_RSP;
}
byte switchToLR() {
if (vbt_ok) {
digitalWrite(R_HX, LOW);
lr_enabled = true;
return OK_RSP;
}
else return BLK_RSP;
}
byte switchToIS() {
digitalWrite(R_HX, HIGH);
lr_enabled = false;
return OK_RSP;
}
byte switchToBA() {
if (! ba_enabled) {
// Disable BL
if (bl_enabled) {
digitalWrite(R_BL, LOW);
bl_enabled = false;
//delay(500);
}
digitalWrite(R_IS, LOW);
ba_enabled = true;
digitalWrite(LED_PIN, LOW);
ba_time = millis();
ba_blocked = true;
}
return OK_RSP;
}
byte switchToIN() {
if (vin_ok && ba_enabled) {
digitalWrite(R_IS, HIGH);
ba_enabled = false;
digitalWrite(LED_PIN, HIGH);
return OK_RSP;
}
else return BLK_RSP;
}
void enablePF() {
if (bl_enabled) {
digitalWrite(R_BL, LOW);
bl_enabled = false;
//delay(500);
}
digitalWrite(R_PF, HIGH);
pf_enabled = true;
}
void disablePF() {
digitalWrite(R_PF, LOW);
pf_enabled = false;
}
byte enableBL() {
if (! ba_enabled && ! pf_enabled) {
digitalWrite(R_BL, HIGH);
bl_enabled = true;
return OK_RSP;
}
else return BLK_RSP;
}
void disableBL() {
digitalWrite(R_BL, LOW);
bl_enabled = false;
}
// Get the internal temperature
float getInternalTemp() {
unsigned int wADC;
float t;
ADMUX = (_BV(REFS1) | _BV(REFS0) | _BV(MUX3));
ADCSRA |= _BV(ADEN); // enable the ADC
delay(20); // wait for voltages to become stable.
ADCSRA |= _BV(ADSC); // Start the ADC
while (bit_is_set(ADCSRA,ADSC));
wADC = ADCW;
t = (wADC - 324.31 ) / 1.22;
return(t);
}
byte detectBlink(byte pin) {
// Return codes:
// 0 - LOW
// 1 - HIGH
// 2 - BLINK
byte low_count = 0;
byte high_count = 0;
byte i = 0;
byte pin_level;
for (i = 0; i < 3; i++) {
pin_level = digitalRead(pin);
if (pin_level == HIGH) high_count++;
if (pin_level == LOW) low_count++;
delay(300);
}
if (low_count > 0 && high_count == 0)
return 0;
else
if (high_count > 0 && low_count == 0)
return 1;
else
return 2;
}